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ON THE DYNAMICS OF A SOLID ON AN ABSOLUTELY ROUGH PLANE* 

A.P. MAFMSEV 

in attempt is made to find a theoretical basis for some dynamic effects discovered 
experimentally in one problem of solid body dynamics on a plane, namely, the problem 
of the motion of the "Celtic stone" /l-4/. The main attention is given to oscilla- 
tions of a solid close to the equilibrium position or steady rotation. The motion 
is assumed to oocur without friction and the supporting plane is fixed. Small oscil- 
lations of the body are briefly considered in the neighbourhood of its steady rota- 
tion about the vertical. in approximate system of equations is obtained which 
describes non-linearoscillationsofthe body in the vicinity of its equilibrium posi- 
tion on a plane and a complete analysis is given. The results of the investigation 
agree with experimental observations /1,3/ of the changes in the direction of rota- 
tion the Celtic stone about the vertical without any external action, and the origin 
of rotation in any direction due to oscillations about the horizontal axis. 

The dynamics of the Celtic stone were first investigated in /2/. It was shown that the 
rotational stability of the body about the vertical depends on nhe direction of rotation, and, 
it was also concluded that it is possible for the body to rotate about the vertical due to its 
oscillation about the horizontal axis. A rigorous solution of the problem of the stability of 
the body about the vertical in the absence of slip is given in /5-i'/. Numerous experimental 
conclusions on the motion of the Celtic stone are confirmed by numerical integration of the 
equations of motion in /8/. In /4/ an abstract mathematicalmodelof Celtic stone was proposed 
without analyzing its correspondence to a real solid on a plane.** 

1. Let a heavy solid under the action of an initial shock perform a motion in which it 
rests on one point of its convex surface on an absolutely rough stationary horizontal plane. 
Let Oxgz be a stationary systemof coordinates with origin at the point 0 of the supporting 
plane z = 0. The 0% axis is directed vertically upward. The system of coordinates G&lrlf,~ 
whose axes are directed along the principal central axes of inertia of the body is attached to 
the body. We take the three Euler angles and the two coordinates x and y of the body's centre 
of mass in the system Oxyz. The third coordinate z of the centre of mass is the distance of 
that centre from the support plane taken with a positive or negative sign depending on whether 
the centre of mass lies above (as in Fig.1 , which is typical for the Celtic stone) or below 
the support plane. 
system /lo/. 

The heavy solid on a fixed horizontal plane is a non-holonomic Chaplygin's 
The differential equations of motion in Chaplygin's form define the motion of 

the solid relative to its centre of mass, and can be considered independently of the equations 
ofnon-integrable couplings that express the absence of slip. 

It can be shown that the angle of 
precession 'p does not appear in the egua- 
tions of motion /7/, and that they have 
the particular solution 

e = n12, cp = 0, 9' = 0 = const (1.1) 

which corresponds to rotation of the body 
at an arbitrary constant angular velocity 
0 about the axis 6%j in a vertical posi- 
tion. Let +zS,z8 be the perturbations 
of thequantities 9,cp,q*. The equations of 
perturbed motion are 

Fig.1 

*Prikl.Matem.Mekhan.,Vo1.4J,No.4,pp.575-582,1983 
**When this paper was in press, 
deals with this problem. 

the author became aware of the paper by Pascal /9/ which also 
The main results obtained in /9/ follow from Sect.4 of the present 

paper. 
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11.3) 

where m is the mass of the body, g the acceleration due to gravity, A, B,C a-@ tie moments of 

inertia of the body about the axes G&&hG<, h is the distance of the body centre of mass 
from the suppart plane, taken with the appropriate sign in the unperturbed motion (1.11, rl 
and r& are the principal xadii of curvature of the body surface at its point of contract with 
the plane, and a is the angle between the GF; axis and the curvature line corresponding to rl, 
read counterclockwise from the 66 axis looking along the 6@ axFs,which in (1.1) is vertical, 
toward the origin G. The quadratic forms in zltxi' (i = i,2) are denoted by P,and F, their 
explicit form is not required. 

2. Tha characteristic equation of the linearized system of equations of the pexturbed 
motion (1.2) is written in the form /7/ 

,h (PA* $ Qd.3 f Rh2 + Qdh + S ) = 0 

P = (A + dG) (C t mhs), Q = mU1 (A - C) 

R = [(A -k C - B f 2m@fs - (A $- t? - B -+ 2#3&") mh (F1 -$- 

r2) -j- mBhzrlr,l a* - [A + mh*) !(A - 13) 0% + m (k - 

iI) (g + dh)l - (C f mh*) i(C - B) co2 -I- m (h - lz). (g 3 dh)l 

S = (A - B) (C - B) w4 + m (g + w2h) d [A (h - I,) + 

C (h - iI) - B (2h - rl - rd + m* (g + 02hp (h - rl) (h - r,) 

The conditions 

(2.1) 

were obtained in /S-7/. When they axe satisfied, the motion (1.1) is asymptotically stable 
relative to perturbations of the quantities 9, e’, CP. v’- Inequality (2.2) imposes constraints 
on the mass distribution, the body surface geometry and the magnitude of the angular velocity, 
while inequality (2.3) kmpses constraints on the sign of the angular velocity (the direc- 
tion of rotation] of the body. If h>O, i.e,, in the unperturbed motion the cenkxe of mass 
of the body lies above the support plane, then in steady rotation the smaller horizontal axis 
of the central ellipsoid of inertia ~OYF;S ahead of the line of minimum curvature of the body 
surface at its point of contact with the plane: when h<<O the pattern is reversed. 

It was also shownin/5-7/ that instability occurs if only one of inequalities (2-2) or 
(2.3) is violated. This implies that when QfO, the steady rotation (1.3) is unstable for 
fairly small ca, irrespective of its sign, since for small 0) inequalities (2.2) are incompat- 
ible. 

H at least one of the quantities 0, h, A - C,r, - r,,sin2Gt is zera, then Q = 0 and in- 
equality (2.3) is not satisfied. The chaxasteristic equation (2.1) has, as before, a single 
zero root, and the remaining four satisfy the biquadratic equation. Let the biquadratic 
equation have two pairs of purely imaginary roots -fiol,=fliW2((dl>W2> 0). Then, the motion is 
stable in the linear approximation. Let us consider the roots of Eq,(2.1) for small Qm* The 



calculations show that to a first approximation in Qu, the rOO’CS rfrhJ (j i= i, 2) in addition to 

corrections to their imaginary parts, also have real parts Xj (j = 1,2) 

x1 = 
Qw (o* - co,*) 

2 (A + mh*) (C + mh*) (ox* - 0~2) 
(2.4) 

%* = 
00 W - 0%) 

2 (A + mh*) (C +- mW) (01~ - 023 

Suppose Qo> 0, i.e. inequality 12.3) is satisfied. It then follows from (2.4) that for 
%*< aa< mr*we have x1( O(j = %,2) and the small oscillations of the body close to its 
staiionary rotation (l.l), are exponentially damped. If 0< ma< ale, then x,<O,x,>O 
and the high-frequency oscillations (or frequency ml) are exponentially damped, and the low- 
frequency oscillations (of frequency 02) increase exponentially. If, however, m2> o12, then 
conversely, the low-frequency oscillations are damped, and the high-frequency oscillations in- 
cxease. When Qo<O the development of small oscillations is the opposite. 

3. Let o=O in (l.l), i.e. the body rests ontbeplane on a single point of the & 
axis which is vertical. The necessary and sufficient condition for this equilibrium position 
to be stable is, according to /5/, inequalities rl>h, r,>h. Assuming that this condition is 
satisfied, we will consider the motion of the body close to the position of equilibrium. 

The equations of perturbed motion have the form 

(A + mJ?) x;’ = mg (h - la) z1 - mgkc, + X, (3.1) 
(C+mP)z~~-mgZx,+mg(h-lI,)x,+X2, Bx,‘=X, 

where XI (j = 1,2,3) are the respective functions of (1.3) calculated for Q) = 0. We change 
the variables x11 % *a+ I19 Y2, IS? in system (3.1) which reduces the first two of its linear- 
ized equations to the form corresponding to normal oscillations. 

The frequencies &?,,Q,(bl,>Q,>O) of normal oscillations satisfy the equation 

(A + da) (C -t- da) W - mg [(A + mha) (II - h) + (3.2) 

fC i d2f (12 - h)l W + (mg)” (rr - h) (r2 - k) = 0 

The reduction to standard coordinates y,,ya is obtained by changing the variables 

= UllYl + %Ynz 
z:, = k,mgl, 

z, = uzlY1-b %&a> % = Ys (3.3) 

ulj = kf ItA + mk*) 66f + mg (h - &I 

k, = ItA + mh2) (mgV -I- (C + mha) [(A I- mh*) 011’ + 
mg (h - l,)P)-‘11 

0 = 4,2) 

In the linear approximation with respect to z,,z, the equation of the trace of the 
contact point Mon the body surface is 

E @) = -&(t) - &% (0, t @) - Ia=1 @) + 2 4 (8) 

Hence it follows from (3.3) that for the j-th normal oscillation (with frequency g,) the 
tangent to the trace of Point-V makes an angle @j with the G&,,axis calculated from the form- 
ula 

SB_S= - ~""lj+zlu~j)/(~~j+ gU*j) (f= 1*2) 

Hence we see what the perturbations 217 ZI should be , if the body is to perform high- 
frequency (of frequency a, 1 or low-frequency (of frequency a, )small oscillations. 

In variables yl, yr, ys Eqs.f3.3) take the form 

(3.4) 

(3.5) 

ci = 1, 2)l 
mlh 

Cl x - 
(A-l-&*)A * 

,..= (A+G-~)+2mhl_m~mld, 
(G -+"@)A 

(3.61 
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As in (3.1), terms of higher order than the second relative to perturbations have been 
omitted in system (3.4). We denote by G,,G, 
1, 2). 

the quadratic forms of the variables y,; IJ~' (j = 

To investigate the non-l.fnearsystem(3.4) we reduce it to the normal form ill/, and, 
first, make the change of variables 

In variables 
the &3rivation of 
on the right-hand 

&-z6 

4 (k i= 1, . . ., 5) the linear part of system (3.4) has a diagonal form and 
its normal form reduces to separating resonant terms fromthenon-linearities 
sides of the transformed system (3.4). When &&+M,, the structure of 

the normal form is indtrpendent in Eqs.(3.4) of the quadratic forms G, (i = 1,Z) or, what is 
the same, of the quadratic forms F, in (1.3). Assuming that 66,#2hz,, we obtain the follow- 
ing normal form of system (3.4) written in complex variables: 

s* * = ~~1~~ f ~106olzlz6~ %’ = i&6 + cOloOlz6z6 (3.8) 
zs * = -IP$, + e 001012rzS~ 4' = -iQ626 4 cOOOl62426 

25 * = ~lOlOo%2a, + ~OlOl6w6 

~16001 = c00101 = dZ ~OlOOl = ~00011 = 412 (3.9) 

Cl0100 = mh (r6 - rl) 9: I&* - ul16) sin a cos cc - u,,h, COB 2&(2B) 

cololo=mh (r,-rl) 8,’ [(K&-u~~~) sin a co9 a--uldho cos2cWiB) 
Introducing real polar coordinates in conformity with the formulas 

2% = p1 (ens ul + i sin ul),G = plr (co9 ~5% + i sin u,), 

25 = I,, 26 = r,, 20 = ps 

and carrying out some operations using formulas (3.3) and f3.5), and the 
(3.2), we obtain the normalized system of equations of perturbed motion 
into two independent subsystems 

pi = -aQcplp,, ps' = aQ12p&,, BP; = a @14~la - Q$P"~,~) 

frequency equation 
which is then split 

(3.10) 
(3.11) 

Terms of order higher than the second in (3.10), and those higher than the first Ln 

Pk (k = 1, 2, 3, in (3.11) have been omitted. 

4. In the e-neighbourhood of the equilibrium position, the right-hand sides of Eqs. 
(3.101 and (3.11) differ from the respective right-hand sides of the exact equations of per- 
turbed motion by quantities of order ~3 and E*, respectively. The solutions of the exact 
equations are approximated by the solutions of system (3.10) and (3.11) with an error of a2 
for pk and of order a for 6) in a time interval of order e-i. Restricting the calculations 
to this accuracy, we shall consider the approximate system (3.10), (3.111 instead of the 
complete equations of perturbed motion, 

Equations (3.11) are readily integrable. We obtain al(t) = B, t + oJ (0) (j = 1, 2). System 

(3.10) has the integrals 

Q,$,' + Qz'p,' 4 Bps% = BP= (IL > 01 (4.1) 

pzxp* = v (x = a,vs&‘) (4.21 

where p and v are constants determined by the initial conditions. 
The trajectories of system (3.10) are respresented in Fig.2 in space pl,pp,pV They lie 

in the region pl>O,ps 20, andrepresent curves representing the intersections of the sur- 
face of the ellipsoid (4.1) and the cylindrical surface (4.2). We use the notation A, = 
P*/Qj (j jLp t, 2). For a given constant p the quantity v must satisfy the inequalities 

0 < v < v* - x-l (Bp%/((1 f x) Q,*])(-)/a 

If Y>V* the motion is impossible, The plane pl&a = p,&a on which the right-hand side 
of the third equation of system (3.10) vanishes is shaded. The trajectories are symmetrical 
about the plane pa = 0. The direction of motion along the trajectories is indicated by the 
arrows. It is assumed that a> 0; when a<0 the motion is in the opposite direction. 

Let us consider the properties of the solutions of system (3.10) and their rel.ations 
with the properties of motion of the solid in the plane. The points P, = (0, 0, p), P, = (0, 

0, -I& p, = (pl',pro,O) in Fig.2 denote the equilibrium position of system (3.10) - Steady ro- 
tations about the vertical are denoted by the points PI and P,, respectively, counterclock- 
wise at an angular velocity p and clockwise at an angular velocity -+A Both rotations are 



unstable, as implied by the linearized equations (3.10>, and illustrated in Fig.2. 
The equilibrium position P, corresponds to condition- 

afly periodic, or periodic oscillations of the body, when 
S&/Q, is a rational number (not equal two, since the case 

when $2, = 262, is excluded form consideration). Then 

The effects that are characteristic of Celtic stones 
/l-3/ are not observed: oscillations about the horizontal. 
axes do not induce rotation of the body about the vertical 
(p,zsO). To investigate the stability of the oscillations 

we use the Liapunov stability theorem /12/. We construct a 
function V in the form of tbs bundle of integrals (4.1) and 
(4.21. Setting pl=pp+ R1,&=fiQ+R,,&= RI, we rewrite them 
in the form 

Fig.2 

The dots in the formula for V, denote terms of higher order than the second with respeot 
to perturbations R1 and Rt. We set V= V,- V,+Q,*VSS/(~+') and obtain the formula 

(4.3) 

Since the function (4.3) is positive definite, the oscillations considered are stablewith 
respect to perturbations fi,pa,pS. This conclusion is illustrated in Pfg.2, where the point Pa 
is surrounded by closed trajectories lying on the ellipsoid (4.11, as close to that point as 
desired. 

The system of Eqs.(3.10) has the following particular solutions: 

p1 = 0, pa (0 = A, seh l& (t + @,)I, pt = P tk ISI 0 -t- e&l 
0% = -u@C?~*, e, = 61-a Arth Ip, (O)/ pl) 
~~(:)~A~soh[6,(t+e,)l,p,=O,p,=1rth16,(t+e31 
(6, = a@ra, e, - 6,“1 Arth ip, to)/ pf) 

(4.4) 

(4.51 

in which pI or &are identically equal to zero. 
These solutions are represented in Fig.2 by asysnptotic trajectories that connect the 

unstable equilibrium positions P,and P,. 
solution (4.4) corresponds to motions of the body, when it rotates about tie vertical and 

executes fow-frequency oscillations. If p,(O)fl)O, i.e. at the initfal instant the body 
either is not rotating about the vertical, or is rotating cl.ookwise, then in the course of 
time the "amplitude" of the oscillations p, decreases monotonically (when a>& as in Fig. 
2) from the initial value p,(O) ta zero, while the angular velocity increases in absolute 
value. Sn the limit the body pcrforms pure rotation about the vertical in a clockwise dizec- 
tion at an angular velocity -_p. If, however, pa (O)>O, i,e, at the initial instant the body 
is rotating C0unterclockwise, the limit of the body motions le the same as when p,(O)<O, but 
the evolution of the motion is entirely different. When OCt<f, m -el , the oscillation 
amplitude pz increases monotonically and the body rotates about the vertical counterclockwise 
at decreasing angular velooity. At the instant t=t* the angular velocity vanishes and the 
oscillation amplitude pa reaches its maximum value A,. When t>t,, the body already rotates 
clockwise at an increasing absolute value of angular velocity,and the oscillation amplitu&e 
decreases monotonically. Thus when ps (O)>O, during the time of evolution of the motion a 
change in the direction of rotation of the body-about the vertical occurs only once. 

Solution 14.51 defines a motion in whfch the body, whiLe rotating about the vertical, 
performs high-frequency osciUati.ons. The analysis of the evalution of the motion is similar 
to the preceding case. The limit motion here is a pure counterclockwise rotation about the 
vertical atan angulas velocity F. If at the initial instant the body is rotating clockwise 
about the vertical, then at the instant t = -e, a change in the direction of rotation occurs. 
At that instant the oscillation amplitude pz reaches its man- value A,. 

Let US now consider solutions of system (3.10) that are different from those of (4.4), 
(4,s) and from the equilibrium position Pl(i = 1,2,3). From the integrals (4.1) and (4.2) we 
have 
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Substituting pa 
variables, we obtain 

If the function 
ing Eqs. (4.6). 

from (4.6) into the first equation of system (3.10) and separating the 

(4.7) 

pl(t) is determined from (4.7), then p%(t) and pa(t) are calculated us- 

It is not possible, in general, to obtain an explicit analytic expression for the func- 
tion px (t). Bow%ver the qualitiative nature of the motion may be directly obtained from the 
system of Eqs.(3.10). For example, at the initial instant of time let the right-hand side of 
the third equation of system (3.10) and the quantity ps be positive. The Pattern of motion 
is as follows (Fig.2). When t> 0 the body is rotating counterclockwise about the vertical 
more and more rapidly (pIis increasing); the amplitude of the high-frequency oscillations of 
p1 decreases, and that of the low-frequency oscillations pz increases. This ultimately re- 

sults in the right-hand side of the third equation of system (3.10) vanishing: in Fig.2 this 
cdrresponds to the instant at which the trajectory intersects the plane pp12 = pznre. At 
that instant the angular velocity p*of rotation about the vertical reaches its maximum and 
begins to decrease, remaining Positive (the body continues to rotate counterclockwise about 
the vertical, and p,,as before, decreases and pB increases. This countinues until the angular 
velocity vanishes. At that instant pl' and pp reach their minimum and maximum values, respect- 
ively, and then p1 begins to increase and pB to decrease, while the body is already rotating 
in the opposite direction (clockwise) (ps<Of at an ever-increasing absolute value of the 
angular velocity. The decrease of pB and increase of p1 results in the right-hand side of 
the third equation of system (3.10) again vanishing fin Fig.2 the trajectory again intersects 
the plane p@,* = p&*, but in the region of negative ps). At that instant the angular vel- 
oscity of the body in clockwise rotation reaches its maximum in absolute value, after which 
the rotation of the body begins toslow down, p1 continue6 to increase, and pz continues to 
decrease. This pattern con&nues until pa vanishes, when pI and pa reach their maximum and 
minimum values respectively, and the body changes its rotation from clockwise to counterclock- 
wise. The pattern of motion is subsequently periodically repeated. The closed trajectosy 
in Fig.2 corresponds to the cycle of motion described. The Period of oscillations may be 
determined using Eq.(4.7). 
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